
 1

Programming Scripted Patterns in Photoshop CC,
Version 2 – Programming Guide

Radomír Měch
Principal Scientist

Imagination Lab, Adobe Research

 a b

 c d e

Figure 1: Five patterns generated by scripted pattern fills in Photoshop CC, with default
settings: Brick Fill (a), Cross Weave (b), Random Fill (c), Spiral (d), and Symmetry Fill

(e).

 2

 a b

 c d e

Figure 2: The same five patterns as in Figure 1 with non-default user settings: Brick Fill
(a), Cross Weave (b), Random Fill (c), Spiral (d), and Symmetry Fill (e).

 a b

Figure 3: Patterns generated by 3 new scripts in Photoshop CC:
 Place Along Path inside a Picture Frame (a), Tree (b).

 3

1 Scripted Patterns in Photoshop CC
Scripted patterns are invoked from Fill dialog in Photoshop CC. There are 8 scripted
pattern fills in the Fill dialog, accessed by right clicking on a selection and choosing Fill,
or by selecting Fill from the Edit Menu. Once you have the fill dialog box you choose
Pattern in the Use selection box, and check the checkbox Scripted Patterns. Many of
these scripts place the selected Custom Pattern in a variety of ways. Two scripts, Picture
Frame and Tree generate geometry without using the custom pattern.

Before a scripted pattern is created, you can modify the various parameters for each fill in
a pop-up dialog. The dialog also contains a preview that is automatically scaled to show
only a local part of the resulting pattern – so that the style of the pattern is understood
(see below).

 4

Photoshop CC includes eight JavaScript files that define eight distinct Fill patterns. These
scripts are executed by the Deco framework, which is a scriptable environment that is
tailored for creating procedural patterns. All these JavaScript files are located in the
following directory:

Windows 32 bit:
Program Files (x86)\Adobe\Adobe Photoshop CC\Presets\Deco

Windows 64 bit:
Program Files\Adobe\Adobe Photoshop CC (64 Bit)\Presets\Deco

Mac:
/Applications/Adobe Photoshop CC/Presets/Deco

 5

In this document you will find out more about the Deco framework, you will learn how to
modify existing tools and create new ones. Throughout the document you will see simple
tasks that will help you to get familiar with the framework and its integration in
Photoshop CC. Here is the first task:

Task 1: Add a new tool
1. Go to the directory where the Fill scripts are located.
2. Copy the Brick Fill.jsx to the same directory and rename to My Fill.jsx.
3. Open the Fill Dialog
4. Select an area, right click, select Fill and Pattern. Click on Scripted Pattern.
5. A new scripted pattern appears in the pull-down menu – the patterns are ordered

alphabetically. Since we copied the Brick Fill script, the functionality would be
exactly the same.

Note that you can also place your scripts to a user directory
C:\Users\yourUserName\AppData\Roaming\Adobe\Adobe Photoshop CC\Presets\Deco

On mac the directory is
~Library/Application Support/Adobe/Adobe Photoshop CC/Presets/Deco.
Keep in mind that unless you run
 chflags nohidden ~/Library
in a terminal, you will not see the Library folder in Finder.

 6

2 Deco Framework Overview
The core of the Deco framework is a procedural engine. The procedural engine is
basically a C++ class that is connected to Photoshop via an app-specific interface (see
Figure 4). After the user invokes a specific scripted pattern, Photoshop informs the
engine about what script to load and what custom pattern (an image patch) to use in the
fill.

Figure 4: Schematic model of the Deco framework (same in Photoshop CC)

There are two ways of specifying procedural patterns and additional geometry primitives
in Photoshop using a Deco script, also called scriptal. In many cases, the selected area is
filled by the procedural engine loading and executing the given scriptal. In such cases, the
scriptal contains a sequence of commands that repeatedly place the input custom pattern,
each at a different pixel location, optionally with a specific rotation or scaling. Additional
geometry can be placed as well (as in the case of Picture Frame or Tree script).

In the second approach, as the procedural engine executes the scriptal, several objects
(modules) are created and sent to the engine. After the scriptal is executed, the engine
loops over these objects and it calls their produce and render method. The produce
method is used to modify parameters of the object or to create new objects. The render
method is used to place the input pattern according to the object’s parameters. Refer to
section 5.7 for more details on this mode. This approach should be used when a
simulation loop is needed for creating more complex patterns or when you want to apply
symmetry to your pattern, such as in Symmetry Fill.

The patterns and geometry primitives placed during the initial script execution or during
the simulation loop over the defined objects form the resulting fill. Both approaches can
be combined. For example, a part of the pattern can be specified during the execution and
another part by running the simulation loop.

 7

3 Defining Scripts
Scripted Pattern Fills in Photoshop CC are defined using scripts, called scriptals. These
scriptals are based on an ExtendScript, with some additional predefined objects.

It is important to note that most functionality available in regular Photoshop scripts is
available in Deco scripts as well. The exceptions are functions that modify layers or
selection (using those will result in undetermined outcome). The preview dialog, for
example, was fully built using Photoshop script functionalities.

3.1 Predefined Objects
When Deco scripts are executed, the JavaScript engine (the same as regular Photoshop
scripts use) is initialized with a set of predefined objects that are used by the scriptal to
communicate with the procedural engine class or to perform various tasks that are often
needed in a procedural pattern specification. In Photoshop CC, the following objects are
defined:

• Engine: facilitates communication with the procedural engine class;
• RenderAPI: used to place the input pattern and additional geometry primitives at a

certain position, with a possible rotation or scaling. This object is also used to obtain
an Image object that represents the input pattern.

• Image: a container for the input custom pattern – received from the RenderAPI object.
• Vector2, Vector3, and Vector4: vector objects with overloaded arithmetic operators;
• Frame2, and Frame3: two and three dimensional frames specifying the position and

orientation of a reference coordinate system. Note that Deco supports full 3D, but the
pattern fills in Photoshop CC use only the first two dimensions for display.

• Symmetry: used to create various symmetries.
• DecoGeometry: stores geometric primitive, such as lines, Bezier curves, or polygons;
• Curve, GenCylPoint: used to define cross-section and profile curves and control

points of a generalized cylinder (not used by any shipped scripts).

These objects are described in more details in Appendices.

3.2 Direct Specification
Direct specification refers to the mode when the input pattern is placed during the initial
execution of a scriptal. This mode may be best explained by following a simple example.

3.2.1 Debugging a Script
Before we begin detailing an example of a script, it will be useful for you to know how to
obtain debugging information when running a Deco Script.

Please refer to Task 2 to see how a value from the scriptal can be displayed during
debugging of your scripts.

 8

Task 2: Print out the input pattern size
1. Open the file My Fill.jsx that you created in Task 1, preferably in the ExtendScript

Toolkit, but any text editor will suffice.
2. Scroll past the modelParameters definition.
3. Check out the two commands defining pattern, and patternSize.
4. Add the following line just after the line defining patternSize.

Engine.message(“pattern size: “, patternSize.x, “ , “, patternSize.y)

Alternatively, you can also use the Photoshop script command alert
alert(“Pattern size: “ + patternSize.x + “ , “ + patternSize.y)

5. Go to pattern fill, and select My Fill on the first default input pattern.
Before the preview dialog appears, you will get the following message.

 You can see the message sent by the scriptal after the text Info:.

Please note that this functionality is intended only for purposes of learning about script
writing and for debugging. It is not intended to be used during the normal operation of
the scripted patterns.

A similar message is printed when there is a parsing error while executing the script, see
Task 3.

 9

Task 3: Learn about error messages
1. Open the file My Fill.jsx that you created in Task 1.
2. Let us introduce a typo to the line you just added in Task Error! Reference source

not found.. Change Engine to engine.
engine.message(“pattern size: “, patternSize.x, “ x “, patternSize.y)

3. If you apply the My Fill now, you will see the following error message:

4. Change back engine to Engine and remove one s from message:

5. Change back to message and remove one comma from inside the message:

Now we are prepared to attempt our first scripted pattern.

3.2.2 Default Grid Fill as Scripted Pattern

Let us try to reproduce the Photoshop’s regular pattern fill using a scriptal. The input
custom pattern will be placed one after another in a grid layout. We can achieve this by
determining the size of the selected area, the size of the input pattern and looping over the
x and y coordinate to fill the given area.

 10

First, we query the size of the selected area from the RenderAPI object. We actually get
the size of a rectangular area that tightly bounds the current selection – in case it is not a
rectangular selection.
 var outputSize = RenderAPI.getParameter(kpsSize)

Note that the parameter kpsSize is not a string, it is a predefined variable with a given
value. The returned value is a Vector3 object, where outputSize.x is the width of the
selected area in pixels and outputSize.y is the height.

Then we get the input pattern as an Image object and query its size.
 var pattern = RenderAPI.getParameter(kpsPattern)
 var patternSize = pattern.getParameter(kpsSize)

The variable patternSize is a Vector3 object, where patternSize.x and patternSize.y are the
width and height of the input pattern in pixels, respectively.
Once we know the sizes, we can write the loop placing the input pattern. A pattern is
placed by calling pattern.render(RenderAPI) where pattern is the Image object obtained
above. By default the pattern center is at pixel (0,0), which is at the top left corner of the
bounding rectangle of the selected area. To move the default location, you can use
RenderAPI.translate command. As you apply the translation, the transformation matrix
stored in the RenderAPI object is updated. Thus the consequent translations will be
combined. For example, if you translate twice by a distance d along the x axis it will
result in a translation by 2d. You can also use RenderAPI.pushMatrix and
RenderAPI.popMatrix commands to store and restore the transformation matrix.

The loop placing the patterns in a grid would be as follows:
RenderAPI.translate (patternSize.x/2, patternSize.y/2)
for (var y = 0; y < outputSize.y + patternSize.y; y+= patternSize.y)
{
 RenderAPI.pushMatrix()
 for (var x = 0; x < outputSize.x + patternSize.x; x+= patternSize.x)
 {
 pattern.render(RenderAPI)
 RenderAPI.translate(patternSize.x, 0)
 }
 RenderAPI.popMatrix()
 RenderAPI.translate(0, patternSize.y)
}

The first translate command assures that the top left corner of the pattern is aligned with
the top left corner of the bounding box of the selected area. Notice the use of pushMatrix
and popMatrix to restore the position after the whole row is place so that we can translate
only along the y axis. See Task 4 below.

 11

Task 4: Implement default pattern fill (almost)
1. Create a new file Grid Fill.jsx in the script directory.
2. Type in the script:

 var outputSize = RenderAPI.getParameter(kpsSize)
 var pattern = RenderAPI.getParameter(kpsPattern)
 var patternSize = pattern.getParameter(kpsSize)
 RenderAPI.translate (patternSize.x/2, patternSize.y/2)
 for (var y = 0; y < outputSize.y + patternSize.y; y+= patternSize.y)
 {
 RenderAPI.pushMatrix()
 for (var x = 0; x < outputSize.x + patternSize.x; x+= patternSize.x)
 {
 pattern.render(RenderAPI)
 RenderAPI.translate(patternSize.x, 0)
 }
 RenderAPI.popMatrix()
 RenderAPI.translate(0, patternSize.y)
 }

3. Go to pattern fill, and select the new Grid Fill using the second default input pattern.
Depending on your selections you may see something like this:

Notice that the patterns in the neighboring areas are not aligned as they would be if you
used Photoshop’s default pattern fill. Thus our work is not done yet.

See the text below and Task 5 how to fix that.

 12

When you align the top left pattern with the bounding box of each selected area, the
patterns are not aligned in neighboring selections (see the result in Task 4). This is
inconsistent with the behavior of Photoshop’s default pattern fill. To fix this you can
query the position of the top left corner of the selected area in the image coordinates:
 var origin = RenderAPI.getParameter(kpsOrigin)

and use the value to shift the placed patterns:
 RenderAPI.translate (-(origin.x % patternSize.x), -(origin.y % patternSize.y))

See the result in Task 5.

Task 5: Improve the default pattern fill
1. Open the script Grid Fill.jsx you created in Task 4.
2. Add the following two lines just before the first RenderAPI.translate:

 var origin = RenderAPI.getParameter(kpsOrigin)
 RenderAPI.translate (-(origin.x % patternSize.x), -(origin.y % patternSize.y))

3. After you edit the script, you can try to fill your areas again.

This time we get:

Notice the difference between this result and the one from Task 4. Now the patterns are
aligned between selected areas.

 13

3.2.3 Adding Rotation to the Pattern

You can use the transformations exposed in the RenderAPI object to rotate or scale the
placed patterns. You can add rotation to the current transformation matrix used by the
RenderAPI object by calling

RenderAPI.rotate(angleDegrees)

where the angle is specified in degrees. See Task 6 for an example.

Task 6: Add rotation
1. Open the script Grid Fill.jsx. Save it as Grid Rotate Fill.jsx
2. Replace the line pattern.render(RenderAPI) with:

 RenderAPI.pushMatrix()
 RenderAPI.rotate(45)
 pattern.render(RenderAPI)
 RenderAPI.popMatrix()

3. After you edit the script, you can apply the new fill

.

As you can see, the patterns in Task 6 overlap each other based on the order in which
they were placed. The Fill started in the first row, left to right, then the second row, etc.
This corresponds to the Photoshop’s Normal blend mode. If the pattern is transparent, the
Deco engine will use the transparency even if the layer is not transparent. You can
control the blend mode when each individual pattern is placed (see the following section).

Let us make one more adjustment to the fill from Task 6.

 14

Task 7: Move patterns closer
In this task we will reduce the step between rows to make them overlap more:
1. Open the script Grid Rotate Fill.jsx from Task 6.
2. Add *0.7 to the following three lines:

 RenderAPI.translateRel (patternSize.x/2, patternSize.y/2* 0.7)
 for (var y = 0; y < outputSize.y + patternSize.y; y+= patternSize.y * 0.7)
 RenderAPI.translateRel(0, patternSize.y * 0.7)

The first change moves the first pattern a bit up, the second and third decrease the
step in y coordinate.

3. After you edit the script, you can apply the fill:

.

3.2.4 Controlling Model Parameters
You are probably thinking would not it be nice to be able to change the rotation angle or
spacing without having to edit the script? It was not possible in Photoshop CS6, but it is
possible in Photoshop CC. You can encapsulate some parameters in an object called
modelParameters, define a dialog structure, move drawing commands to a run method,
and invoke a predefined script _Deco Menu.jsx from your script. The _Deco Menu script
will build a dialog with a preview panel and once you choose desired parameter it will
create the desirable fill pattern.

See Section 5.3 for more information and check out the listing on the following page.

 15

modelParameters = {
 angle : 45, // rotation angle
 offset : 100, // offset between rows, between 0 and 100%.
}

var outputSize = RenderAPI.getParameter(kpsSize)
var pattern = RenderAPI.getParameter(kpsPattern)
var patternSize = pattern.getParameter(kpsSize)
var origin = RenderAPI.getParameter(kpsOrigin)

function run (api, parameters, scale)
{
 var offset = parameters.offset/100
 api.translate (patternSize.x/2, patternSize.y/2 * offset)
 for (var y = 0; y < outputSize.y + patternSize.y; y+= patternSize.y * offset)
 {
 api.pushMatrix()
 for (var x = 0; x < outputSize.x + patternSize.x; x+= patternSize.x)
 {
 api.translate (-(origin.x % patternSize.x), -(origin.y % patternSize.y))

 api.pushMatrix()
 api.rotate(parameters.angle)
 pattern.render(api)
 api.popMatrix()

 api.translate(patternSize.x, 0)
 }
 api.popMatrix()
 api.translate(0, patternSize.y * offset)
 }
}

var decoMenu = { // an object that defines the menu
 menuTitle : "Grid Fill",
 panels : [
 { panelName : "",
 panelMenu : [
 { itemName : "Rotate angle:", itemUnit : "degrees", itemType : 'slider',
 itemValue : modelParameters.angle, itemMin : -180, itemMax : 180, itemStep : 1,
 varName : 'angle' },
 { itemName : "Offset:" , itemUnit : "%", itemType : 'slider',
 itemValue : modelParameters.offset, itemMin : 0, itemMax : 100, itemStep : 0.1,
 varName : 'offset' }
] }
] // end of panels
 }; // end of menu

Engine.evalFile ("_Deco Menu.jsx") // Call Photoshop Script that creates the dialog

if (typeof skipRun == 'undefined' || !skipRun)

run(RenderAPI, modelParameters, 1)

Table: Version of the Grid Fill script that uses a dialog to control the angle and the offset.

 16

3.2.5 Changing Blend Mode
You can control the blend mode used when patterns or geometric primitives are placed.
Due to limitations of OpenGL accelerated drawing, only 3 out of numerous Photoshop
blend modes are supported: Normal, Multiply and Screen. A blend mode can be changed
at any time using command
 RenderAPI.setParameter(kpsBlendMode, mode)
Where mode is one of kpsBlendNormal, kpsBlendMultiply, and kpsBlendScreen.

If you really need to use other blend modes, it is possible, but only for patterns (not for
other geometric primitives). You have to disable the OpenGL rendering for patterns using

RenderAPI.setParameter(kpsUseOpenGL, 0)

This has to be done at the beginning of the script, before any drawing happens. In case of
using a Deco dialog and run method, it has to be done outside the run method. The flag is
copied to the preview api automatically.

Once you disable OpenGL drawing, you can change the default normal blend mode
before a pattern is placed using the following command:

pattern.setParameter(kpsPatternBlendMode, mode)

where mode is one of:
kpsBlendNormal
kpsBlendDarken
kpsBlendLighten
kpsBlendHue
kpsBlendSaturation
kpsBlendColor
kpsBlendLuminosity
kpsBlendMultiply
kpsBlendScreen
kpsBlendDissolve
kpsBlendOverlay
kpsBlendHardLight
kpsBlendSoftLight
kpsBlendDifference
kpsBlendExclusion
kpsBlendColorDodge
kpsBlendColorBurn
kpsBlendLinearDodge
kpsBlendLinearBurn
kpsBlendLinearLight
kpsBlendVividLight
kpsBlendPinLight
kpsBlendHardMix
kpsBlendLighterColor
kpsBlendDarkerColor
kpsBlendSubtraction
kpsBlendDivide

 17

These values and the blend behavior correspond to the Photoshop blend modes. Keep in
mind that these blend modes affect only the blending between patterns that are placed
into a scratch buffer before the buffer is added to the selected area. Once you change a
blend mode on a pattern it will stay set until you change it again. Also, by disabling
OpenGL the drawing will be slower.

Task 8: Change pattern blend mode
1. Open the script Grid Rotate Fill.jsx from Task 7.
2. Remove the *0.7 from the three lines where you added them in Task 7.
3. Add the following two lines before the first for loop:

RenderAPI.setParameter(kpsUseOpenGL, 0)
pattern.setParameter (kpsPatternBlendMode, kpsBlendLighterColor)

4. After you edit the script, you can apply the fill:

Compare the result with the one from Task 6.
.

3.2.6 Modifying Color – Color Blend Mode

You may notice that the Deco scripted fill patterns shipped with Photoshop CC randomly
modify the color of the pattern. By default the pattern is placed with its original color. To
change the color you can send a color value to the RenderAPI object using the command:

RenderAPI.Color(kFillColor,r,g,b)

specifying the value for the red, green, and blue channels. The color of the pattern will be
multiplied by this color. Note that the values of the color components used to multiply the
pattern color can be above 1 (where 1 is the normal intensity).

 18

To use other Photoshop blend modes to modify the color of the input pattern you need to
disable OpenGL again as in the previous section. Then you can set a blend mode for the
placed pattern using

pattern.setParameter(kpsColorBlendMode,mode)

where mode is one of Photoshop blend modes defined in Section 3.2.5.

If you want to not only darken the color but also lighten it, you can use
kpsBlendLinearLight blend mode. Values of r, g, and b below 0.5 will darken the
pattern’s color while values over 0.5 will lighten it.

3.2.7 Scaling the Patterns
We can not only specify the location or orientation of the placed patterns but we can also
scale them using the command:

RenderAPI.scale(scaleFactor)

Keep in mind that the commands translate, rotate, and scale are additive, thus if you
rotate twice by 20 degrees, for example, the resulting rotation will be 40 degrees.

Task 9: Add Scale to Grid Rotate Fill
1. Open the script Grid Rotate Fill.jsx from Task 8.
2. Add the following line before the pattern.render command:
 RenderAPI.scale(0.7 + Math.random()*0.4)

3. Apply the fill:

 19

3.2.8 Preserving Randomness across Selections
As you saw in Task 4 and Task 5, some care is needed to ensure that the pattern is
consistent for neighboring or overlapping selections. If such behavior is desired you
should not use the method Math.random as you did in Task 9 because you cannot control
its seed. Instead, you should use Engine.rand, for which you can set the seed.

If you check out the shipped script Brick Fill.jsx you will see that we determine the row
and column index of the top left element in the selection using commands:
 var row = Math.floor(outputOrigin.y / patternSize.y)
 var column = Math.floor(outputOrigin.x / patternSize.x)

We update these values in the loop placing the patterns and then we seed the random
number generator for each position using the following seed:
 seed = (row * 214013+ c * 2531011) % 0x7fffffff
This assures that the same random values will be used for the pattern even if it is part of a
different selection.
The example in Task 10 places randomly rotated and scaled patterns in a grid, where each
position is slightly modified (jittered) by +/- quarter of the pattern width and height. The
rotations are selected so that there are only 30 distinct values between 0 and 360 degrees.
The reason for this is related to performance, because rotated patterns are stored in a
cache to speed up subsequent rotations. See Section 6 for more information.

Task 10: Add Random Rotation and Scale to Brick Fill
1. Open the script Brick Fill.jsx.
2. Run the script with the following pattern (you will need to copy and paste it from this

document to Photoshop and make it a pattern):

3. Run the fill and you will receive the result from Figure 5, on the left.
4. Add the following two lines just before pattern.render:
 RenderAPI.scale(Engine.rand()*0.1 + 1)
 RenderAPI.rotate(-4 + Math.floor(Engine.rand()*60) / 7.5) // 60 distinct rotations

5. Run the fill again and you will get the result from Figure 5, on the right.

 20

Figure 5: An effect of random scaling and rotation (on the left) applied to the default

Brick Fill (on the right).

4 Drawing Geometric Primitives in Scripts
Since OpenGL is used for rendering the patterns internally, it is possible to create much
more diverse results than those in Photoshop CS6. The differences are enumerated in this
section.

The Deco drawing API in Photoshop CC supports the following new features:
• The user can draw 2D primitives, such as lines, Bezier curves, polygons, or even 3D

shapes (that are flattened for display);
• The placement of patterns is hardware accelerated resulting in significant speed

improvements compared to CS6.

Geometric primitives can be defined in two ways. First, it is possible to draw them
directly using methods of the RenderAPI (which is visible as api in the run method if a
dialog is defined). It is possible to draw circles, arcs, points, lines, polygons (filled or
not), and Bezier curves. See more details in Appendix D.1 Drawing Methods of
RenderAPI.

The second approach is to create a DecoGeometry object, specify add the primitive to it
and then draw the object. See more details in Appendix G. Object DecoGeometry.

Following is an example of a script that draws several 2d primitives:

 21

Engine.setSceneBBox(0,10,0,10)

RenderAPI.Color(kStrokeColor, 0.8, 0, 0)
RenderAPI.Line (1,1, 9,9)
var pt1 = new Vector2(1,9)
var pt2 = new Vector2(9,1)
RenderAPI.Line(pt1, pt2)

RenderAPI.Bezier(pt1, new Vector2(4,6), new Vector2(6,6), new Vector2(9,9))

RenderAPI.Color(kFillColor, 0, 0.8, 0)
RenderAPI.Polygon([pt1, new Vector2(5,5), new Vector2(1,1)])

var geom = new DecoGeometry
geom.addPolygon ([pt2, new Vector2(5,5), new Vector2(9,9)])
geom.addBezier(new Vector2(1,1), new Vector2(4,4), new Vector2(6,4), pt2)

geom.render(RenderAPI)

This script draws 2 lines, 2 Bezier curves, and 2 polygons. One polygon and one Bezier
curve are defined using a DecoGeometry object. The first command,
Engine.setSceneBBox sets the range of the coordinates used by the script – this is an
option to using the default size in pixels. Note that it is possible to set two specific colors,
the stroke color and the fill color.

As mentioned above, it is possible to create a 3D geometry as well. In fact, all points
specifying the geometry primitives mentioned above can have the third coordinate that
controls the distance of the point from the view plane. In addition, it is possible to define
meshes (see DecoGeometry in Appendix G. Object DecoGeometry) and generalized
cylinders, which are formed by 2d curves swiped in 3D along another curve (see
Appendix H. Generalized Cylinders). The results are flattened to the 2D layer, Deco will
not create a 3D layer in Photoshop. See Section 5.6 for an example.

5 Advanced topics

In this section we will cover more advanced topics related to use and operation of Deco
pattern fills.

5.1 Use of Paths
The script writer can get information about Photoshop paths that are selected. You can
get the selected path as an array of DecoGeometry objects (see Appendix G) as shown
below
 var paths = api.getParameter (kpsSelectedPaths)

The api is the RenderAPI in case the preview dialog is not used or the parameter of the
run method if the dialog is used (see Section 5.3.3).

 22

You can trace each path by using the following methods:
 getValue (kGetGeometryLength)
 getValue (kGetPointAlongGeometry, distanceAlongPath)
 getValue (kGetNormalAlongGeometry, distanceAlongPath)

Once you obtain a length of each path, you can get any point along it, with the normal (a
vector perpendicular to the path at that point). A path in Photoshop can be discontinuous
– each path is a collection of strokes made by the pen tool, until a new path is selected in
the path panel. If you need to process only continuous strokes of a pen, make each stroke
in a separate path or add a script code that will detect discontinuities as you process each
path in your paths array.

Here is an example of placing circles along all selected paths:
 var paths = api.getParameter (kpsSelectedPaths)
 for (var p = 0; p < paths.length, p++)
 {
 var len = getValue (kGetGeometryLength)
 for (var dist = 0; dist < len; dist += 10)
 {
 var pt = getValue (kGetPointAlongGeometry, dist)
 // normal is not needed
 api.Circle(pt, 5) // point and radius
 }
 }

5.2 Instancing
In case you are drawing the same geometric primitive or group of primitives multiple
times you should use instancing. Since each instance is kept in the graphics hardware
memory you can achieve significant speedups.

The following methods are used to define, test, and delete an instance:

api.defineInstance (instanceID1, instanceID2, …)
api.endInstance ()
api.drawInstance (instanceID1, instanceID2, …)
api.instanceExists (instanceID1, instanceID2, …)
api.deleteInstance (instanceID1, instanceID2, …)

The api is the RenderAPI in case the preview dialog is not used or the parameter of the
run method if the dialog is used (see Section 5.3.3). Each instance is identified by one or
more identifiers that are internally concatenated together. Each identifier should be a
string or a number.

After you call defineInstance and it returns 1, you can define your primitives. Any call
made to api will be recorded, until endInstance is called. An instance is drawn using the

 23

call drawInstance. Note that you can nest instance by using drawInstance with a different
id when defining another instance. You cannot nest defineInstance calls.

Here is an example:

drawSpirals = fuction (api)
{
 // define instances
 for (var index = 0; index < numSpirals; index++)
 {
 if (api.instanceExists("spiral", index))
 api.deleteInstance("spiral", index); // delete if exists

 if (api.defineInstance("spiral", index))
 {
 // define spiral
 …
 api.endInstance()
 }
 }

 // draw instances
 for (var index = 0; index < numSpirals; index++)
 {
 if (api.instanceExists("spiral", index))
 api.drawInstance(“spiral”, index) // draw a spiral
 }
}

Since all api calls between defineInstance and endInstance are stored, you can not only
specify primitives, but also their color or transformation. These are ‘baked’ into the
instance. If you want to define an instance without color and then change the color before
calling the drawInstance, there is a caveat. Since internally instances are stored as
OpenGL display lists and OpenGL supports only one color, it is not possible to define
two different colors (for fill and stroke) and then draw the instance. When an instance is
being drawn only one color is used. If you want to have an instance with different fill and
stroke colors, you should define two instances, one with the fill only and the other one
using line primitives for the boundaries.

5.3 Defining Control Dialogs
Deco scripts allow the developer to create parametric procedural models. It is important
for the user to be able to modify the parameters without having to know about the
location of the script and having to edit the script. On the other hand, each script can have
different sets of parameters, which cannot be captured by one static dialog.

Deco scripts provide a compromise. Each script can define its own dialog that is built by
the scripting engine. The advantage is that the user can modify the script parameters and

 24

see a preview of the result. The disadvantage is that not all features of static Photoshop
dialogs are available and the Deco dialog has a slightly different feel.

5.3.1 Script Parameters to be Modified
The parameters that you want the dialog to control should be all in one object, named
modelParameters. For example, here are the parameters for the Brick Fill script, with
their default values:

modelParameters = {
 // Offset between rows of pattern expressed in percent of pattern width.
 // For example 50% is half the width.
 offset : 50, // use a value between 0 and 100. The default is 50.

 // Spacing between patterns in pixels.
 // For example,1 creates 1 pixel gap between patterns
 spacing : 0, // use a value between -10 to 20. The default is 0.

 // Variation of color of the pattern.
 // For example, value of 0.2 means that each of the red, green, and blue color
 // will be multiplied by a DIFFERENT random value from interval 0.8 and 1.2.
 // Set to 0 if you do not want to modify the pattern color.
 colorRandomness : 0.05, // use a value between 0 and 1. The default is 0.05.

 // Variation of pattern brightness.
 // For example, value of 0.6 means that each of the red, green, and blue color
 // will be multiplied by THE SAME random value from interval 0.4 and 1.6.
 // Set to 0 if you do not want to modify the pattern brightness.
 brightnessRandomness : 0.1, // use a value between 0 and 1. The default is 0.1.

 // Rotation of individual patterns.
 rotateAngle : 0 // Use a value between -180 and 180. The default is 0.
}

5.3.2 Dialog Definition
To define a dialog’s menu panel, in which you can allow the user to modify selected
parameters of the script, you define its name, size, and individual menu items. Menu
items are displayed in the order they are specified.

The object used to define the menu has the following structure:

 var decoMenu = {
 menuTitle : 'My Menu',
 menuBackground : [0.93, 0.93, 0.93, 1],
 previewBackground : [1, 1, 1, 1],
 panels : [
 { panelName : 'Panel 1',
 leftColumnWidth : 180,
 editTextWidth : 35,

 25

 unitsWidth : 65,
 dropdownlistWidth : 160,
 panelMenu : [
 { itemName : 'Item 1 (range 1, 10)', itemUnit : 'pixels', itemType : 'edittext',
 itemValue : 5, itemMin : 1, itemMax : 10, varName : 'var1' },
 …
] }
] // end of panels
 } // end of menu

You can keep most of the data as shown, just change the menuTitle and provide your own
list of menu items.

There are several types of parameter control that you can expose in the menu:

1. Text input
This item allows the user to enter a number or a text. The item is specified as follows:

 { itemName : 'Item 1 (range 1, 10)', itemUnit : 'pixels', itemType : 'edittext',
 itemValue : 5, itemMin : 1, itemMax : 10, varName : 'var1' }

The itemName is the text that will be displayed to the left of the text input box. The
itemUnit is the text displayed to the right of the text input box. The itemType should be
‘edittext’. The itemValue is the initial value (often you can use
modelParameter.variable). The itemMin and itemMax define the range in case the input
is a number. The variable name is the name of the variable in the modelParameters. For
example if you want to modify modelParameters.density, varName would be ‘density’.
Note that all values of the item have to be specified.

2. Drop down list
This item allows the user to select from a pull down list of options. The item is specified
as follows:

{ itemName : 'List name', itemUnit : '', itemType : 'dropdownlist',
 itemList : ['selection 1', 'selection 2', {item: ‘selection3’, image: ‘filename’}],
 itemValue : 2, itemMin : 0, itemMax : 0, varName : 'var2',
 disableItems : [// optional
 [0, [2,3]], // gray out the third and fourth menu item for ’selection 1’ (indexed from 0)
 [1, [3]] // gray out the fourth menu item for ‘selection2’
] },

The itemName is the text that will be displayed to the left of the pull down list. The
itemUnit is ignored. The itemType should be ‘dropdownlist’. The itemList is an array of
strings that appear in the pulldown list. Instead of a string, you can define an object with
a string item and an image filename – in this case the string will be preceded by the
image. The system does not scale the image so it is recommended to use a low resolution
icon only.

 26

The itemValue is the initial selection – indexed from 0. The itemMin and itemMax are
ignored. Optionally, you could specify which items in the current panel will be disabled
(grayed out) for a specific selection. The item disableItems is an array of arrays. Each
array specifies a pulldown list item index (from 0) and an array of indices of menu items
that are to be grayed out when the selection is made.

3. Checkbox
This item allows the user to select a binary value using a checkbox. The item is specified
as follows:

 { itemName : 'Checkbox name', itemUnit : '', itemType : 'checkbox',
 itemValue : true, itemMin : 0, itemMax : 0, varName : 'var3' },

The itemName is the text that will be displayed to the right of the pull down list. The
itemUnit is ignored. The itemType should be ‘checkbox’. The itemValue is the initial
value, true of false. The itemMin and itemMax are ignored.

4. Colorpicker
This item allows the user to select a color. The item is specified as follows:

 { itemName : ‘Color', itemUnit : '', itemType : 'colorpicker',
 itemValue : [1, 1, 1], varName : 'color1' },

The itemName is the text that will be displayed to the right of the color swatch. The
itemUnit is ignored. The itemType should be ‘colorpicker’. The itemValue is the initial
value, an array of red, green, and blue color components, each in the interval [0,1].

5. Slider
This item allows the user to enter a number either directly by typing it in or by moving a
slider. The item is specified as follows:

 { itemName : 'Slider name', itemUnit : 'degrees', itemType : 'slider', itemValue : 0,
 itemMin : -45, itemMax : 45, itemStep : 1, varName : 'angle1' }

The itemName is the text that will be displayed to the left of the text input box. The slider
will be placed below the text and the input box. The itemUnit is the text displayed to the
right of the text input box. The itemType should be ‘slider’. The itemValue is the initial
value. The itemMin and itemMax define the range and the slider is built based on these
two values. The itemStep specifies the step in which the number changes when the slider
is moved.

Optionally, you can link two sliders together by using itemLEQitem : item_index and
itemGEQitem: item_index. In the first case, the current slider value is forced to be less or
equal to value in a menu item item_index (indexed from 0), in the second case the value
is forced to be greater or equal to the referenced menu item. This mechanism can be used
when two sliders control the minimum and the maximum value of some range.

 27

5.3.3 Run Method for Preview
Once you define the menu object, you give control to the script _Deco_Menu.jsx that
opens the dialog with the menu and allows the user to select the input values. Once the
user is satisfied with the selection the object moduleParameters is updated and the
control comes back to the calling script:

Engine.evalFile ("_Deco Menu.jsx")

While the dialog is up, as parameter values are being changed, a preview image is
computed (on mouse up only). To facilitate that you have to define a method run where
you do all the model definition and drawing. The parameters of the method are api,
specifying the output rendering api, parameters, specifying the model parameters, and
scale, specifying additional scale. You need to use these values inside the run function,
do not use the global RenderAPI and modelParameters. The preview image is generated
using a different parameter object and using a different api than the final run.

If you are only drawing directly to the rendering api, you just define the run method:

function run (api, parameters, scale)
{
 // get the size of the output area – you have to do it inside run method
 var outputSize = api.getParameter(kpsSize)
 // get the location of the top left corner of the bounding rectangle around the selection
 var outputOrigin = api.getParameter(kpsOrigin)

 … // define the pattern
}

If you are using the simulation loop (see Section 5.7), you have to take care of the
simulation loop and one render call at the end of your run function.

function run (api, parameters, scale)
{
 // get the size of the output area – you have to do it inside run method
 var outputSize = api.getParameter(kpsSize)
 // get the location of the top left corner of the bounding rectangle around the selection
 var outputOrigin = api.getParameter(kpsOrigin)

 … // create the simulation modules, compute stepsNeeded

 if (parameters == previewParameters) // only for preview run
 {
 for (var step = 0; step < stepsNeeded; step++)
 Engine.produce();

 Engine.render (api)
 }
}

 28

The scale parameter is used to scale the preview up and down. It may be desirable to
show the whole work area in the preview but this would be not only prohibitively slow
for large areas, but the size of the patterns in the preview may be so small that the user
may not discern the local structure of the result (in case of the Tree script, for example,
the local preview does not make sense and that is why the preview is pre-computed for a
predetermined set of input values). That is why by default the preview is scaled so only a
local part of the results is seen. Generally, the size is determined so that the preview
contains about 3-5 input pattern at scale 1 along the width. If you scale the pattern down,
the preview will contain more of it. This default behavior can be overridden and you can
set scale to whatever you see fit in your scripts.

Note that all modules added to the Deco engine using addModule are deleted after the run
method is called during the preview. You do not have to remove them from the engine
yourself.

Since all model definition is done inside the run method, you need to call it at the end,
after the _Deco_Menu script is executed and the user selects the desired parameter
values. If the user cancels the selection, a skipRun variable is set to true, thus you should
test it before calling the final run:

if (typeof skipRun == 'undefined' || !skipRun) // run unless we exited the preview window
 run(RenderAPI, modelParameters, 1)

5.4 Pattern Subregions
Any image represented as Image object, which includes also the user selected pattern, can
be cropped into one or more regions using a command
 var image1 = pattern.getSubregion(left, right, top, bottom)

The coordinates of the cropped region are in pixels, with 0,0 being on top left.

5.5 Troubleshooting OpenGL
If you have some issues with OpenGL in Scripted Patterns, you can try to trouble shoot
them using a script _Deco Settings.jsx placed in the same directory as other scripts. The
script is loaded before OpenGL is initialized both for main rendering and also for preview
rendering and you can disable various parts or get additional debug information. Here is
an example of such a script, with all values set to the default values:
 var RenderAPI_settings =
 {
 UseOpenGL : true,

MaxOpenGLTileSize : 1024,
 UseMultiSampling : true,

MaxSamples : 256,
 MaxBufferDepth : 32,
 OptimizeTileRendering : true,

PerformGPUTest : true,
DebugMessages : false

 29

 }

 var DecoPattern_settings =
 {
 UseOpenGL : true
 }

For example, you can set the UseOpenGL flag to false to see whether OpenGL is indeed
a culprit. Note that you cannot use that if you are actually defining primitives. You need
OpenGL in that case, you can only disable it if your script places the custom pattern.

You can try to reduce the tile size to 512 or even 256 on cards with small amount of
graphics memory, you can disable multisampling (although the results will be aliased), or
set the maximum number of samples (to 8, for example).

5.6 3D Geometry
The following script is an example of drawing a 3D geometry primitive.

First a mesh is constructed from points, normals, and faces and added to a Deco
Geometry object. Then we define the range of the visible area and whether the camera is
orthographics or perspective. Then we define material properties of the surface and the
light position and color. We set the light and the material, enable lighting, set the proper
transformations and draw the cube.

 30

cube = new DecoGeometry(new Frame3)
vertices = new Array(0)
normals = new Array(0)

vertices.push(new Vector3(-0.5, -0.5, -0.5))
vertices.push(new Vector3(0.5, -0.5, -0.5))
vertices.push(new Vector3(0.5, -0.5, 0.5))
vertices.push(new Vector3(-0.5, -0.5, 0.5))
vertices.push(new Vector3(-0.5, 0.5, -0.5))
vertices.push(new Vector3(0.5, 0.5, -0.5))
vertices.push(new Vector3(0.5, 0.5, 0.5))
vertices.push(new Vector3(-0.5, 0.5, 0.5))

normals.push(new Vector3(0,-1,0))
normals.push(new Vector3(0,1,0))
normals.push(new Vector3(-1,0,0))
normals.push(new Vector3(1,0,0))
normals.push(new Vector3(0,0,-1))
normals.push(new Vector3(0,0,1))

faces = new Array(0)

faces.push({ vertices: [4,3,2,1], normals: [1,1,1,1]}) // bottom
faces.push({ vertices: [5,6,7,8], normals: [2,2,2,2]}) // top
faces.push({ vertices: [1,2,6,5], normals: [5,5,5,5]}) // front
faces.push({ vertices: [4,3,7,8], normals: [6,6,6,6]}) // back
faces.push({ vertices: [2,3,7,6], normals: [4,4,4,4]}) // left
faces.push({ vertices: [4,1,5,8], normals: [3,3,3,3]}) // right

cube.addMesh({ vertices: vertices, normals: normals, faces:faces })

Engine.setSceneBBox (-1, 1, -1, 1, -1, 4) // orthographics projection
//Engine.setSceneBBox (-1, 1, -1, 1, 1.5, 4) // perspective projection

// set light and material - after the bounding box is defined
var light = new Light
light.setValue (kLightPosition, -2, 4, 10, 0)
light.setValue (kLightColor, 1,1,1)
var material = new Material
material.setValue (kColorAmbient, 0.2, 0.2, 0.0, 1)
material.setValue (kColorDiffuse, 1, 1, 0.2, 1)

RenderAPI.setLight (0, light)
RenderAPI.setMaterial (kMatFront, material)
RenderAPI.setParameter(kpsLighting, 1)

RenderAPI.translate(0,0,-2.5)
RenderAPI.rotate(45, new Vector3(1,1,1))
cube.render(RenderAPI)

 31

5.7 Simulation Loop
There are cases when direct specification of pattern fills during the execution of the script
is not sufficient. An example could be the use of symmetries or when creating more
complex procedural pattern.

Let us review how a procedural model operates. A procedural model is specified by a set
of modules and a set of rules specifying the behavior of these modules over time. The
modeling process starts with an initial module or modules. Then in a simulation loop, the
rule for each active module is applied, controlling the development of the model. At any
stage, or after the simulation loop is completed, the model can be converted into a
graphical representation. Some or all modules have certain graphical meaning – they
represent parts of the modeled structure.

Procedural modeling takes advantage of the fact that from a set of simple rules applied
repetitively to various parts of the model – captured as modules – a complex pattern may
emerge – as in the case of examples from Section 7.

A key task in developing a procedural model is to determine the rules that control the
local behavior of the model and the modules, to which these rules are applied. In Deco
framework, the modules are expressed as JavaScript objects and the rules are captured in
the object methods:
 produce (engine)
 render (renderAPI)

The first method is called by the procedural engine during each simulation step and the
second method is called when the structure is being displayed. Note that Photoshop keeps
a buffer for the current fill pattern thus the render method is in fact adding patterns to this
buffer, which is then merged with the current layer.

The produce method can create new modules or it can just modify the behavior of the
existing module. The parameter engine is an object that represents the procedural engine.
The parameter renderAPI stores the predefined RenderAPI object that contains methods
for placing the input pattern.

Example 1: This example will assume that the input pattern is a square pattern. It will
divide the selected area into bins of size equal to the pattern size, and create an array that
stores a flag for each bin marking whether the bin is occupied or not.

The following is a definition of an object ModuleSeek that will place patterns in a straight
line until it reaches an occupied bin. Then it turns right and tries to continue. If even the
bin to the right is occupied, it removes itself from the engine.

 32

function ModuleSeek(frame)
 {
 this.frame = frame
 markOccupied (frame)
 }

 ModuleSeek.prototype.produce = function (engine)
 {
 // test if we can move forward
 this.frame.advance(patternSize.x)
 if (positionOccupied (this.frame))
 {

 // try to turn right
 this.frame.advance(-patternSize.x) // move back first

 this.frame.rotateDeg(-90)
 this.frame.advance(patternSize.x)
 if (positionOccupied(this.frame))

 {
 Engine.removeModule(this)
 return kDontCallAgain
 }
 }
 markOccupied (this.frame)
 return kCallAgain
 }

 ModuleSeek.prototype.render = function (renderapi)
 {
 pattern.render (renderapi)
 }

This code defines the module and its methods. It needs to create the first module (the
initial state). That can be done by the following code:
 // Initial module
 var frame = new Frame2()
 frame.rotateDeg(90)
 frame.setPosition (patternSize.x/2, patternSize.y/2)
 Engine.addModule (new ModuleSeek (frame))

The array used to mark which place is occupied is defined as follows:
 // Get the size of the selected area and of the input pattern
 var outputSize = RenderAPI.getParameter(kpsSize)
 var pattern = RenderAPI.getParameter(kpsPattern)
 var patternSize = pattern.getParameter(kpsSize)
 // get the size of the selected area in multiples of pattern size
 var sizex = Math.floor((outputSize.x + patternSize.x-1) / patternSize.x)
 var sizey = Math.floor((outputSize.y + patternSize.y-1) / patternSize.y)
 // define the array and initialize to false
 var occupied = new Array(sizex*sizey)

 33

 for (var i = 0; i < sizex*sizey; i++)
 occupied[i] = false;
 function positionOccupied (frame)
 {
 var x = frame.position().x
 var y = frame.position().y
 // first test whether we are inside the selected area
 if (x < 0 || x >= sizex * patternSize.x || y < 0 || y >= sizey * patternSize.y)
 return true
 return occupied[Math.floor(x / patternSize.x+1) + sizex * Math.floor(y /
patternSize.y+1)]
 }
 function markOccupied (frame)
 {
 var x = Math.floor((frame.position().x) / patternSize.x + 1)
 var y = Math.floor((frame.position().y) / patternSize.y + 1)
 occupied[x + sizex * y] = true
 }

Before finishing the script, you need to set the output bounding box and make sure that
the simulation will run for a certain number of steps:
 Engine.setSceneBBox (0, outputSize.x, 0, outputSize.y)
 Engine.setParameter (kRunSimulation, 1)
 Engine.setParameter (kNumSimulationSteps, 1000)

The number of steps can be a very large number because the simulation stops
automatically when a no new module is added to the engine and no pattern is placed in a
simulation step.

These three pieces of code define the whole script, which can produce the result in Figure
6 (on the left). Note that it looks best when the input pattern has a clear single direction.
The fill on the right has been obtained by defining a second input module:
 // second initial module
 var frame2 = new Frame2()
 frame2.setPosition (patternSize.x*(Math.floor(sizex/2) - 0.5), patternSize.y*1.5)
 Engine.addModule (new ModuleSeek (frame2, 1 /* delay */))

 34

Figure 6: A more complicated pattern defined by custom scripts (not shipped with CS6).
A simulation loop is executed on modules that place the input pattern (the arrow) in a row
until an occupied element is reached and then they turn right. The pattern on the left
started with one module and the pattern on the right started with two initial modules
(marked in red).

This is just a very basic example of using the simulation loop for creating procedural
pattern fills. It is possible to extend the basic functionality of this scriptal. You could add
a random change of direction, even if there is no occupied element in the path of the
module. You could decide whether to turn right or left if the place ahead is occupied or
you could spawn new modules on the side of the straight rows of elements at certain
distances – forming branches. In those cases the result may not be a completly filled area.
In that case an additional step may be performed - if no module can move forward, the
array of occupied elements is scanned and if there is an empty element, a new module is
placed there.

The following section reviews the operation of the Deco pattern fills.

5.8 Operation of Deco Scripts
The Deco procedural engine is implemented as a C++ class that is exposed in the scriptal
as the Engine object. When a Deco pattern fill is applied to a selected area, the scriptal
that defines the model is loaded and executed (see the long brown arrow along the
scriptal in Figure 7). A pattern fill can be defined in that stage (Section 3.2). Optionally, a
set of objects can be defined to create a pattern during the simulation loop (Section 5.7).

When the method Engine.addModule is invoked in the scriptal, the C++ method
Engine::addModule is called (see the control going to the C++ class and back). The C++
implementation of the method stores the module in a list kept by the Engine class. After
executing the scriptal, a JavaScript runtime is populated with the modules defined by the
scriptal.

 35

The engine then runs the simulation by repeatedly performing a Produce and Render pass
over the modules stored in the list. During each pass, the corresponding method produce
or render defined on each module is executed. Figure 7 illustrates the flow of control in
the Deco framework.

Figure 7: Example of the flow of control in the Deco framework during a simulation.

The functionality of the simulation loop is very simple and the question one may ask is
why it is not implemented in the script directly? There are several advantages of having
the procedural engine control the simulation loop.

1. The loop execution can be started and stopped depending on changes in the
model. If no module is created in a produce pass and no pattern is placed in a
render pass the simulation is automatically stopped.

2. The simulation loop can be stopped by the application if the execution of the
model is too long.

3. Also, there are various additional mechanisms affecting the simulation loop that
would be difficult for the user to implement in the script.

One of the additional mechanisms is an execution of Start method. Before the simulation
starts (but after the scriptal is loaded), a method Start is called, if present. Note that the
simulation is not started by default and the user needs to set the Engine’s parameter
kRunSimulation to 1 (see Appendix A).

The following sections describe the individual passes in more detail.

5.8.1 Produce Pass

The Produce pass is very straightforward. At the beginning of each pass, the optional
method StartEach, which may be defined in the scriptal, is called. Then the list of

 36

modules stored in the procedural engine is parsed and the produce method of each object
is called, if it is defined. New objects created by the pass are added to the end of the list,
but their produce methods are not executed until the next Produce pass.

A method EndEach, if defined, is executed at the end of each Produce pass.

5.8.2 Rendering Pass
Rendering of the procedural model is done by calling the engine’s render method, which
in turn calls each module’s render. Similarly to the Produce pass, you can define a
method StartEachRender and EndEachRender that will be called at the beginning and at
the end of each Render pass, respectively.

During the Render pass the module’s render method receives a RenderAPI object as a
parameter. The RenderAPI object is used to place the input pattern to form the desired
fill.

5.8.3 Module’s Position and Orientation - Frame
A module can contain an optional parameter frame, specifying the position and
orientation of the module. If the parameter frame is present it is applied automatically
before the module’s render call is executed. Thus the primitives can be specified in the
local coordinate frame, such as the fill in the Example 1.

6 Performance
The performance of the scripted pattern fills depends on two components, the complexity
of calculations needed to compute the size and position of all elements placed on the
screen and the complexity of drawing all those elements.

Since the drawing is hardware accelerated using OpenGL and the drawing times are
usually low. For very large documents the result is divided into tiles that fit into the
graphics card memory and only objects overlapping a given tile are drawn. Of course if
you define a very large document covered by many polygons of the document size, the
drawing will slow down. As mentioned above it is still recommended to use instancing if
an element is drawn multiple times (Section 5.2).

In more complex scripts such as the Picture Frame or Tree most of the time is spent in
building the structure and by defining the geometry – that is then drawn quite fast.

Photoshop cannot know how long such a task would take without the script informing the
engine about its progress. See the next section on how to control the progress bar from
the script.

 37

6.1 Controlling the Progress Bar
If a Photoshop task is expected to take more than a few second a progress bar appears to
show progress. Since a script can take any time from a fraction of a second to tens of
seconds, Photoshop does not know how to display the progress bar correctly.

If you know that your script will take longer than a few seconds, you should help
Photoshop by informing it how the script execution is progressing. To do that you can
wrap your functional parts with commands kpsStartTask and kpsFinishTask or
kpsStartSubTask and kpsFinishTask.

For example, let us say you are creating 10,000 primitives in a loop and each primitive
takes about the same time. You would use kpsStartSubTask, and additional two
parameters specifying the current index of the subtask and the total number of subtasks.
 for (var i = 0; i < 10000; i++)
 {
 RenderAPI.command (kpsStartSubTask, i, 10000)
 // define your complex primitives
 …
 RenderAPI.command(kpsFinishTask)
 }

This is good but we are not finished yet. This loop only defines the primitives, they are
actually not drawn yet, even if you use RenderAPI calls like Line or Polygon etc. The
drawing is happening later. As mentioned above, it usually takes longer to prepare the
primitives than to draw them using OpenGL, but it still takes some time.

Let us say we did some testing and we know that it usually takes 85% of the total time to
prepare the objects (you can use an alert after your loop to determine that). In this case
you can wrap your loop with a kpsStartTask and kpsFinishTask commands. The
additional parameter of kpsStartTask command specifies the operation of this task with
respect to the remaining estimated time. In our case it would be 0.85 then:
 RenderAPI.command(kpsStartTask, 0.85)
 for (var i = 0; i < 10000; i++)
 {
 RenderAPI.command (kpsStartSubTask, i, 10000)
 // define your complex primitives
 …
 RenderAPI.command(kpsFinishTask)
 }
 RenderAPI.command(kpsFinishTask)

Photshop performs its own timing thus if your estimates are way off, the progress bar
may not appear at all - Photoshop may assume from the first few subtasks that all
subtasks will be done within a few seconds – or the progress bar is jerky. The second
issue is really hard to avoid since it is difficult to estimate how long will parts of the
script take on different machines. You may experience the effects when running the Tree
script for example.

 38

Note that the progress bar is disabled during the preview operation when the preview
dialog is up.

6.2 Rotating Patterns when OpenGL is Disabled
If you disable OpenGL drawing (for example, to get more advanced blend modes), the
software is used to draw patterns and then it matters whether the input pattern is large or
whether it is rotated or scaled. If you scale each placed pattern (in the script), there will
be an impact to performance. Rotating the input pattern can be even costlier and that is
why Deco internally uses a cache to store rotated patterns. If you write your script so
that it uses only a limited number of rotations, up to 50 or so, they will be cached. For
example, see the way rotations are defined in Task 10.

The size of the cache is by default set to 128 MB, which is sufficient to run the Spiral fill
on the default patterns without any rotated pattern being dropped from the cache. If you
use a bigger input pattern, you would reach the cache limit before all angles are stored
and the performance would drop. For that reasons, you can increase the size of the cache
by calling the following command:
 pattern.setParameter(kpsMaxPatternCacheSize, sizeInBytes)

The cache is kept around so that when you place the same input pattern again in the same
script – but in a different fill area - or in a different script that uses same rotations, the
cached patterns can be reused. You can disable this behavior by setting the following
parameter to 1:
 pattern.setParameter(kpsKeepPatternCache, 1)

Note that this will affect the global behavior of the cache, for all scripts and all patterns.
If you want to clear cache just in your script you can call the command:
 pattern.clearCache()

If your input pattern is too small, even without rotations, the fill can take a long time. It is
important to realize that patterns of constant color get automatically converted to a 1x1
pixel patterns in Photoshop, because original pattern fill did not need to know about the
pattern size. If you use such a pattern in any Deco script the fill could be very slow.

7 Motivation for Using Procedural Modeling

The motivation for creating Deco framework came from my previous experience with
procedural modeling. In a procedural model, a local behavior or growth of a structure or a
pattern is described by simple rules or procedures. These rules are applied in parallel to
many parts of the model, resulting in a potentially complex behavior or structure.

Example of a simple branching structure defined by two rules is given in Figure 8.

 39

Figure 8: Example of a simple procedural model with two rules

Rules similar to those in Figure 8, with additional clipping when the branch reached out
of a predefined shape have been used to generate branching structures in Figure 9. The
leaves were added using additional rules.

Figure 9: Procedurally generated branching structure clipped to a spiral shape (from

Siggraph ’94 paper by Prusinkiewicz et al.).

Procedural models can generate other structures than trees and bushes. Figure 10 shows
several procedural ornaments, illustrating the potential of using procedural models in
design applications.

Rules Developmental sequence

Initial state

 40

Figure 10: Procedurally generated ornamental patterns (from Siggraph’98 paper by Wong

et al.).

In the context of Photoshop CS6, the procedures are placing image patterns, similarly to
the original pattern fill. The procedures can be as simple as a nested loop creating a brick
fill with randomly varied color of the placed input pattern (see Figure 1a) or a more
complicated, creating the pattern in Figure 11.

The pattern in Figure 11 has been created in two layers. The first layer has been filled
using the Spiral pattern. For the second layer we modified the Spiral script and added
extra logic for creating a sequence of weaved patterns perpendicular that avoiding
collision with each other.

 41

Figure 11: A more complicated pattern defined by a custom script (not shipped with
CS6).

8 Conclusions
Deco is a powerful framework for creating procedural pattern fills. The framework was
designed so that the fills are easy to specify in a well-known scripting language with
various functionalities provided as predefined objects

The framework as it is implemented in Photoshop CS6 is targeting users at several levels:

1. A small group of users who are familiar with scripting can write their own
scriptals.

2. Another group of users may just modify the existing scriptals and change the
parameters of the defined fills.

3. The rest of the users just choose from a set of predefined scriptals provided with
the application, exposed as Deco scripted pattern fills.

We hope that some users may also upload scripts created by others to enhance their
application.

 42

9 Additional Resources
Paper: Měch, R. and Miller, G. The Deco Framework for Interactive Procedural
Modeling. Journal of Computer Graphics Techniques (JCGT), 1(1):43—99 (Dec 28,
2012),

Feel free to contact me at rmech@adobe.com with any questions.

http://jcgt.org/published/0001/01/04/
http://jcgt.org/published/0001/01/04/
mailto:rmech@adobe.com

 43

Appendices
The appendices list the methods associated with predefined objects and give more details
about the object’s function.

A. Object Engine
Procedural engine can be referred to as an object Engine in the script. The class exposes
the following methods:

 addModule (object)
 removeModule (object)
 setInitialObject (object)

 setSceneBBox (minx, maxx, miny, maxy)
 setParameter (parameterType, value)
 getParameter (parameterType)
 setModuleParameter (module, parameterType, value)
 getModuleParameter (module, parameterType)

 evalFile (scriptName [, init func parameters])

 stopPass ()

The method addModule adds an object to the procedural engine. The method
removeModule removes the module from the engine.

The method setInitialObject adds a special module whose produce method is called to
create the initial modules. After the first step the module is ignored.

The method setSceneBBox is used to define the scene span in x and y coordinates.

The method setParameter controls various parameters of the procedural engine. The first
parameter of the method is one of the following predefined numbers:

- kApplyFrame: if set to 1 (default), the module’s frame, if defined, is automatically
applied before its render method is called.

- kRunSimulation: if this parameter is set to 1, the procedural engine informs the
application that the simulation should be automatically started. It is not set by
default in Photoshop CS6.

- kNumSimulationSteps: this parameter controls the number of steps in the
procedural engine loop. It is 1 by default since all patterns shipped in Photoshop
CS6 are defined while the script is executed or require only one step (Symmetry
pattern).

The method getParameter can query any of the above parameters.

The method setModuleParameter controls various parameters of a given module. It is
important to first add the module to the procedural engine using the addModule function,

 44

before you can call setModuleParameter. The second parameter of the method is one of
the following predefined numbers or strings:

- kModuleProcessed: if this parameter is set to 1, it the procedural engine stops
further processing of the module. This can be used in case of symmetries when
the render method can be called multiple times with different symmetry matrices.

- kModuleApplyFrame: this parameter overrides the global parameter set in the
procedural engine for the given module.

- “call”. This string parameter can be followed by one of “produce” or “render”
and a value of 1 or 0. If the value is set to 1, the corresponding method of the
module will be called in the subsequent simulation step. If it is set to 0, it will not
be called unless it is set to 1 again.

The method evalFile evaluates the given script. The script can contain an initialization
method, whose name is a concatenation of the script name and the word “Initialize”. This
method is called after the script is evaluated and any additional parameters of the method
evalFile are sent as parameters of the initialize method.

The method stopPass terminates the current produce or render pass.

The Engine class defines these additional constants that are accessible in the script:

- values returned by methods produce and render
 kDontCallAgain
 kCallAgain

B. Object Frame
The Frame object contains a 4x4 matrix specifying a position and an orientation. There
are two frame objects Frame2 and Frame3. They are both represented by the same data
structures, but the 2D version (Frame2) ignores the third axis and thus some operations
are faster. Note that although you can use the third dimension in your Frame3 objects, the
z axis is ignored when placing the pattern.

The default frame points up along the positive y axis, thus a pattern placed suing the
default frame will point down, since the point (0,0) is in the top left corner of the
bounding box of the selected area.

The frame object has the following methods:
 translate (x,y,z), translate (vector)

 advance (distance)
 setPosition (x,y,z), setPosition (vector)
 setHeading (x,y,z), setHeading (vector)
 setUp (x,y,z), setUp (vector)
 setRight (x,y,z), setRight (vector)
 setSize (x,y,z), setSize (vector)

 position (), position (index)

 45

 heading (), heading (index)
 up (), up (index)
 right (), right (index)
 size (), size (index)

 rotateDeg (angle), RotateDeg (angle, point),
 rotateDeg (angle, point, vector)
 rotatePitch (angle), rotateYaw (angle), rotateRoll (angle)
 rotateTowards (point, maxangle)
 addToHeading (x,y), addToHeading (vector)

 applyToPoint (point)
 applyToVector (vector)
 toLocalCoords (point)

The method translate translates the frame’s position by the given distance. Keep in mind
that the vectors specifying local coordinate system of the frame are scaled by the given
scale of the frame. Thus if you set the frame size to (2, 2, 2) and then translate it by (1, 1,
1) the position will be increased by (2, 2, 2). The parameters can be either a two or three
numbers or a vector object Vector2, Vector3, or Vector4 (see the section below).

The method advance is equivalent to translate (0,distance,0).

Methods setPosition, setHeading, setRight, setUp, and setSize are used to set the frame
position, heading vector (y axis), right vector (x axis), up vector (z axis) and the size. The
parameters can be either numbers or a vector object Vector2, Vector3, or Vector4. In case
of size, we can specify only one value, which is then used for all three axes. Note that
you have to make sure that heading, up, and left, vectors are orthonormal.

Methods position, heading, right, up, and size return either a Vector3 if no parameter is
given or a specific coordinate if parameter index is set.

The method rotateDeg rotates the frame around its position by the given angle. The axis
of rotation is (0,0,1). Positive angles rotate the frame clockwise, negative angles counter
clockwise. Optionally, you can specify the point of rotation and the vector around which
the frame is rotated. Methods rotatePitch, rotateYaw, and rotateRoll, rotate the frame
around its position by the given angle. The vector of rotation is (1,0,0), (0,0,1), and
(0,1,0), respectively.

The method rotateTowards rotates the heading towards the given point, but not more
than the given maximum angle. This operation works only when the frame position and
the given point are in the plane z==0.

The method addToHeading adds a vector to the heading vector. This method adjusts
only the x and y axis, the z axis of the frame has to be (0,0,1).

Methods applyToPoint and applyToVector multiply the given vector or point by the
frame and return the transformed vector or point, respectively.

 46

The method toLocalCoords converts a given point to the coordinates within the frame.

C. Object Vector
There are three classes, Vector2, Vector3, and Vector4 exposed in the script, defining two
to four-dimensional vectors. The elements of a vector can be accessed using .x, .y, .z, and
.w.

There are following methods:
 length ()
 lengthSquared ()
 dot (vector)
 normalize ()
 cross (vector)

They are self-explanatory.

In addition you can perform the following operations on vectors:
 vector1 + vector2
 vector1 – vector2
 vector * scalar
 vector / scalar
 vector1 == vector2

D. Object RenderAPI
The RenderAPI object is used to place the patterns into the application’s current layer.

The object has the following methods:
 setFrame (frame)
 getFrame ()
 scale (x)
 rotate (deg), rotate(deg, x,y,x), rotate(deg, vector)
 translate(x,y) translate(x,y,z)
 translateRel(x,y) translate(x,y,z])
 pushMatrix ()
 popMatrix ()

 setSceneBBox (minx, maxx, miny, maxy)
 Color (kFillColor, red, green, blue)

 setParameter (type, value(s))
 getParameter (type)

The method setFrame sets the current frame. In fact it multiplies the existing frame with
the new one thus you need to use pushMatrix and popMatrix calls if you do not want this
frame to persist. The method getFrame gets the current frame. This may be useful when
a symmetry is applied to the module.

 47

The method scale sets the scale of the subsequently placed pattern. The scale factor is
uinform, same in x and y. The method rotate rotates the subsequently placed pattern by
the given angle in degress. Optionally, you can specify the vector around which the
rotation occurs (it is (0,0,1) by default). If you want to rotate around a point, you need to
translate by –point, rotate and translate by +point. Note that a pattern without any rotation
is pointing up (along positive y axis).

The method translate moves the current position or orientation by the given x and y
pixels horizontally and vertically, respectively. Note that initial position is at 0,0, which
is the top left corner of the bounding box of the selected area.

The method translateRel is a special version of the method translate. It translates the
current position by x and y within the current frame, respecting the actual rotation and
scale. Thus if you first apply a rotation by 45 degrees, then scale by a factor of 2,
RenderAPI.translate(4,0) will move the current position diagonally by a distance of 8
pixels.

The method Color can be used to multiply the red, green, and blue component of each
subsequently placed pattern by the given values (a value of 1 results in no change). The
first parameter kFillColor has to be specified since the Deco engine internally supports
also vector art that uses both stroke and fill color (vector art is not exposed in Photoshop
CS6). See Section 3.2.6 for more detail.

The method setParameter and getParameter are used to set and get specific parameters,
respectively. The RenderAPI object defined by Photoshop uses the following parameters:

The method RenderAPI.getParameter supports these parameters:
- kRenderAPIname – returns a string “PS”.
- kpsPattern – returns the pattern selected in Photoshop CS6.
- kpsSize – returns a Vector3 object specifying the size of the bounding box around the

selected area in pixels.
- kpsOrigin – returns a Vector3 object containing the location of the top left corner of

the bounding rectangle around the selected area.
- kpsAnyPatternPlaced – returns 1 if there was a pattern placed. Usually, you would

set the value to 0 using RenderAPI.setParameter(kspAnyParameterPlaced,0) in the
function StartEachRender and you can get the value in the function EndEachRender
(see Section 5.8.2).

D.1 Drawing Methods of RenderAPI
In Photoshop CC, the following RenderAPI methods can be used for drawing:
 Circle (), Circle (radius), Circle (frame|point, radius)
 Point (frame|point), Point (x,y)
 Polygon (array_of_points)
 Line (), Line (frame), Line (frame1, frame2),

 48

 Line (point1, point2), Line (x1, y1, x2, y2)
 Arc (radius, angle)
 Bezier (frame1, frame2 [, mint, maxt]),
 Bezier (pt1, pt2, pt3, pt4 [, mint, maxt])

 genCylinder (control_point1, control_point2)

 defineInstance(id), endInstance(), drawInstance(id),
 instanceExists(id), deleteInstance(id)

 translate(x,y,z|vector)
 scale(x,y,z|vector)

 setSceneBBox(minx, maxx, miny, maxy [,minz , maxz])
 Color(kStrokeColor|kFillColor, red, green, blue [, alpha])
 lineWidth(width)
 setLight(index, lightObject)
 setMaterial(face, materialObject)

The methods for rendering geometric primitives are selfexplanatory. By default a
primitive is rendered at (0, 0, 0), unless a frame or a point does not specify the position.
In case of lines and Beziers a frame can specify two points, one at its origin and one at
Its end. In this case, the frame direction defines the tangents at the control points.

The starting point of an arc is point (0,0) and the center is point (radius, 0). This way it is
easier to connect arcs in a branching structure.

The method genCylinder renders a generalized cylinder specified by two control points,
GenCylPoint objects (see more information in Appendix H).

When the objects rendered are complex it is desirable to store them in an instance so that
the repeated rendering is faster. A new instance is created by calling method
defineInstance(id), where the id is a sequence of strings and numbers (the first parameter
should be a string). Any RenderAPI command afterwards is stored in the instance, until a
method endInstance() is called. You can draw an instance using a method
drawInstance(id).

The method setSceneBBox is used to set the boundaries of the scene. By default it is
from 0 to the pixel width and height but you can change it to your values. If you use 3D
primitives, you also have to specify the range for z coordinates. The primitives will be
clipped at the limits of the range. If zmin and zmax have oppositite sign an orthographics
projection is set. If they have both the same sign, a perspective projection is set, with the
near plane at zmin and the x and y range specifying the size of the vew rectangle at the
near plane.

D.2 Lighting of 3D Primitives
By default the rendering is not shaded and each primitive has only a stroke and fill color
associated with it. The color is specified by the method Color.

You can switch to shaded mode by setting a light. A new light is created by creating a
new Light object. The parameters of the light are set by command:

 49

 setValue (valueType, r/x, g/y, b/z [, a/w])

where valueType is one of:
- kLightColor
- kLightPosition
- kLightSpotDirection
- kLightSpotExponent
- kLightSpotCutoff
- kLightConstantAttenuation
- kLightLinearAttenuation
- kLightQuadraticAttenuation.
A new light has to be set using RenderAPI.setLight(index, light). Lights are indexed from
0.

A Material object specifies the property of the primitive’s surface. The parameters of the
material are set by command:
 setValue (valueType, r, g, b [, a]])

where valueType is one of:
- kColorAmbient
- kColorDiffuse
- kColorSpecular
- kColorEmission
- kMatShininess – only one parameter after valueType

When a material is set using the method RenderAPI.setMaterial (face, material), the face
parameter is one of: kMatFront, kMatBack, or kMatFrontAndBack.

E. Object Image
The object Image is used to represent the pattern that is to be placed by the script. The
pattern is obtained from the RenderAPI object using the following call:
 pattern = RenderAPI.getParameter(kpsPattern)

The object Image has the following methods:
 render (RenderAPI)
 load (filename [, alpha_image_filename])
 save (filename)
 clearCache ()

 getParameter (type)
 setParameter (type, value)
 getSubregion (left, right, top, bottom) // only in Version 2

 50

The method render sends the pattern to the given renderer. The position, rotation, and
color of the patterns are affected by the parameters set in the RenderAPI object.

The method load loads the pattern from a given file. If the path does not include the
leading ‘/’ or the drive letter the path is relative to install_dir/Presets/Deco. Currently,
only png and tga image formats are supported in object Image. Optionally, you can load
the rgb channels from one image and provide a second image whose first channel will be
used as an alpha channel.

The method save can be used to save the image into a file. As above, the path is either
absolute or relative to install_dir/Presets/Deco. For saving, only png image format is
supported.

The method clearCache clears the cache of rotated patterns. The whole cache is cleared,
not only cache related to the current pattern. See Section 6 for more detail on the use of
pattern cache.

The method getSubregion can be used to select a part of the input pattern in Version 2.
The method returns a new object image. This method can be used to define more than
one input pattern, by combining several patterns into one pattern and then retrieve them
by calling getSubregion repeatedly.

The method getParameter queries these parameters:
- kpsSize – returns a Vector3, whose x and y coordinates contain the pattern size in

pixels.
- kpsMaxPatternCacheSize – returns the maximum allowed size of the pattern cache in

bytes. See Section 6 for more details on the use of the pattern cache.
- kpsKeepPatternCache – returns value 0/1 depending on whether the pattern cache is

being kept after each pattern fill is completed. See Section 6 for more details on the
use of the pattern cache.

The method setParameter can be used to set the following values:
- kpsColorBlendMode – the value specifies the blend modes used to blend each placed

pattern with a color specified in the RenderAPI object. The default blend mode is
kpsBlendMultiply (the list of all blend modes is given in Section 3.2.5).

- kpsPatternBlendMode – the value specifies the blend modes used to blend each
placed pattern with the previously placed patterns. The default blend mode is
kpsBlendNormal (the list of all blend modes is given in Section 3.2.5).

- kpsMaxPatternCacheSize – the value is the maximum allowed size of the pattern
cache in bytes. See Section 6 for more details on the use of the pattern cache.

- kpsKeepPatternCache – the value 0 or 1 specifies whether the pattern cache is being
kept after each pattern fill is completed. See Section 6 for more details on the use of
the pattern cache.

 51

- kpsUseOpenGL – the value 0 or 1 specifies whether the pattern is drawn using
OpenGL with hardware acceleration. Such patterns are drawn much faster but there
are limits of the patterns size (depending on the graphics hardware, it could be up to
8k times 8k pixels). Also, only a basic blend mode is then available.

F. Object Symmetry
Symmetries are supported by inserting an instance of a built-in object Symmetry among
modules specifying the structure (using Engine.addModule). The module stores a list of
matrices to be applied for the symmetry. The matrices are created by the module
according to the type of symmetry. The type is set using the method:
 mySymmetry.setSymmetry (type, parameters)

Currently, the type parameter can be one of the following
 kSymmetryLineReflection
 kSymmetryPointReflection
 kSymmetryRotation
 kSymmetryTranslation
 kSymmetryFriezeTranslation
 kSymmetryFriezeGlideReflection
 kSymmetryFriezeTranslationLineReflection
 kSymmetryFriezeTranslationMirrorReflection
 kSymmetryFriezeTranslationPointReflection
 kSymmetryFriezeGlideReflectionRotation
 kSymmetryFriezeTranslationDoubleReflection
 kSymmetryWallpaperP1
 kSymmetryWallpaperP2
 kSymmetryWallpaperPM
 kSymmetryWallpaperPG
 kSymmetryWallpaperCM
 kSymmetryWallpaperP4
 kSymmetryWallpaperP4M
 kSymmetryWallpaperP4G
 kSymmetryWallpaperPMM
 kSymmetryWallpaperPMG
 kSymmetryWallpaperPGG
 kSymmetryWallpaperCMM
 kSymmetryWallpaperP3
 kSymmetryWallpaperP3M1
 kSymmetryWallpaperP31M
 kSymmetryWallpaperP6
 kSymmetryWallpaperP6M
 kSymmetryTranslationLineReflection
 kSymmetryGlideReflection
 kSymmetryDilatation
 kSymmetryDilativeRotation
 kSymmetryInfiniteDilativeRotation
 kSymmetryDilativeReflection
 kSymmetryRosette
 kSymmetryTiling

 kSymmetrySetFrames

 52

A line reflection is defined by a frame (the line is the y axis) or by a point and an angle
from y axis.

A point reflection is defined by a frame or a point.

A rotation is defined by a frame or a point and an angle (defining the space of the first
instance), followed by a number of instances around the center (frame’s position or the
given point).

A translation is defined by a frame or a point and an angle and the number of instances
along the given direction.

See the scriptal Symmetry Fill.jsx to see how to define each of these symmetries.

Optionally, you can specify your own symmetry by using parameter
kSymmetrytSetFrames, followed by an array of Frame objects, each specifying the
symmetry. Usually, the first Frame is an identity.

After you create a new Symmetry object, set its type, and add it to the Engine object, you
have to add to it those modules that the symmetry will affect using the method
addModule of the symmetry object.

G. Object DecoGeometry
DecoGeometry is an object that contains a set of primitives. The object has the following
methods:
 load (filename)
 addLineStrip(frame), addLineStrip(point, point),
 addLineStrip([array of points])
 addBezier(frame, frame), addBezier(pt1, pt2, pt3, pt3)
 addArc(radius, angle)
 addCircle(), addCircle(radius), addCircle(frame|point, radius)
 addPolygon([array of points])

 addMesh (meshObject)

 setColor(kStrokeColor|kFillColor, red, green, blue [, alpha])

 setFrame(frame)
 multFrame(frame)
 pushFrame()
 popFrame()

 render(renderAPI [, send_bbox])

 smoothen(numEdgeTris)

 instantiate(renderAPI)
 deleteInstance(renderAPI)

 getValue(parameter)

The method load can be used to load the geometry from a file. Currently, it is possible to
load in svg and obj files.

 53

Methods addLineStrip, addBezier, addArc, addCircle, and addPolygon add primitives to
the DecoGeometry object. The parameters are similar to those in RenderAPI object.

Method addMesh can be used to specify a mesh. To define a mesh, create a javascript
object with the following properties:

• vertices – this property contains an array of vertices specified as a Vector3
• normal – this property contains an array of normals specified as a Vector3
• faces – this property contains an array of faces stored in an object with the

following properties:
o vertices – array of indices of face vertices
o normals – array of indices of normal
o multipleTriangles – 0 (default, if the property is not present) if we have a

single polygon face, 1 if the indices specify a triangular mesh and we have
vertices.length/3 triangles stored in a single face (this is more efficient
than having one face structure per each triangle, but there needs to be one
normal per vertex, so vertices.length = normals.length).

Here is an example of defining mesh of a cube:
 cube = new DecoGeometry(new Frame3)

 vertices = new Array(0)
 normals = new Array(0)

 vertices.push(new Vector3(-0.5, -0.5, -0.5))
 vertices.push(new Vector3(0.5, -0.5, -0.5))
 vertices.push(new Vector3(0.5, -0.5, 0.5))
 vertices.push(new Vector3(-0.5, -0.5, 0.5))
 vertices.push(new Vector3(-0.5, 0.5, -0.5)) // 5
 vertices.push(new Vector3(0.5, 0.5, -0.5)) // 6
 vertices.push(new Vector3(0.5, 0.5, 0.5))
 vertices.push(new Vector3(-0.5, 0.5, 0.5))

 normals.push(new Vector3(0,-1,0))
 normals.push(new Vector3(0,1,0))
 normals.push(new Vector3(-1,0,0))
 normals.push(new Vector3(1,0,0))
 normals.push(new Vector3(0,0,-1))
 normals.push(new Vector3(0,0,1))

 faces = new Array(0)

 faces.push({ vertices: [4,3,2,1], normals: [1,1,1,1]}) // bottom
 faces.push({ vertices: [5,6,7,8], normals: [2,2,2,2]}) // top
 faces.push({ vertices: [1,2,6,5], normals: [5,5,5,5]}) // front
 faces.push({ vertices: [4,3,7,8], normals: [6,6,6,6]}) // back
 faces.push({ vertices: [2,3,7,6], normals: [4,4,4,4]}) // left
 faces.push({ vertices: [4,1,5,8], normals: [3,3,3,3]}) // right

 cube.addMesh({ vertices: vertices, normals: normals, faces:faces })

 54

Methods setFrame, multFrame, pushFrame, and popFrame are used to set a frame for
primitives that are added afterwards. These functions have no effect once all geometry
primitives are added.

The method render sends stored primitives to the given renderer. The optional second
parameter indicates whether we are sending only the bounding box of each primitive.
The method instantiate instantiates the primitives for the given API so that when the
render method is called repetitively only the instance is invoked. The method
deleteInstance deletes the instance for the given DecoGeometry.

The method smoothen smoothens the meshes stored in DecoGeometry. Each face is split
into triangles and each triangle is approximated by a smooth surface based on the vertex
normal. The smooth surface is drawn using numEdgeTris*(numEdheTris+1)/2. If
numEdgeTriangles is set to 1, the mesh will not appear smoothened.

The method getValue returns the following information for different value of parameter:

• kGetGeometryLength – if the geometry contains only lines, Beziers, arcs and
other primitives that have defined length (circumference of a circle, for example),
the method returns the total length of all primitives in the DecoGeometry object.

• kGetPointAlongGeometry, kGetNormalAlongGeometry – once you query the
geometry length you can trace it by querying points and the geometry normal at
those points at a desired distance from the first point.

• kGetBoundingBox – returns the geometry bounding box.
• kGetNumVertices, kGetNumFaces – returns the total number of vertices and faces

for all meshes stored inside the geometry, respectively.
• kGetVertex, kGetFace – the first parameter is followed by a second one,

specifying the vertex or face index. Face is returned as an object with the
following properties:

o vertices – array of indices of face vertices
o normals – array of indices of normal
o multipleTriangles – 0 if we have a single polygon face, 1 if the indices

specify a triangular mesh and we have pts.length/3 triangles stored in a
single face (this is more efficient than having one face structure per each
triangle).

H. Generalized Cylinders
Generalized cylinders are defined by a sequence of control points, represented by
GenCylPoint objects. Each GenCylPoint object consists of a frame, a contour (a cross-
section curve), and a set of profile curves.

The frames of two consecutive GenCylPoints points P1 and P2 define a Bezier curve that
forms an axis of the generalized cylinder, along which the contour curve is swept. The
Bezier curve is defined by points (0,0,0) and (0,1,0) in frame coordinates of P1 and
points (0,0,0) and (0,-1,0) in frame coordinates of P2.

 55

H.1. Cross Section Curve
The cross section curve, a contour, is defined as a set of Bezier curves, line segments, and
arcs. It is stored in an object Curve. The center of the cross section is at (0,0,0) and it is
defined in plane z = 0. An object Curve can consist of several primitives, added one by
one.

The object Curve has the following methods:
 loadCurve (filename)
 addLine (frame), addLine(point, point),
 addBezier(frame, frame), addBezier(pt1, pt2, pt3, pt3)
 addArc(radius, angle)

 setNumSegments(num), setNumSegments(index,num)

The method loadCurve can be used to load the curve from a file. Currently, it is possible
to load in svg files.

Methods addLine, addBezier, addArc, addCircle, and addPolygon add primitives to the
Curve object. The parameters are similar to those in RenderAPI object.

Method setNumSegments specifies into how many straight line segment will the curve be
split for rendering. One parameter specifies the number of segments for the whole curve.
When the curve has sharp features, you may want to specify the number of segments per
each added primitive, using the index of the primitive (in the order they were added to the
curve) and the number of segments for that primitive (see example in the section
Rendering below).

Here is an example of a simple contour curve:
 var frame1 = new Frame2d()
 frame1.setPosition (-0.5, 0.0)
 var frame2 = new Frame2d()
 frame2.setPosition (0.5, 0.0)
 var contour = new Curve()
 contour.addBezier (frame1, frame2)

A contour curve is added to a GenCylPoint object using its method setContour. If cross
section curves at two subsequent control points of a generalized cylinder difier they are
interpolated along the generalized cylinder.

H.2. Profile Curves
As the cross section curve is swept along the axis of a generalized cylinder a set of profile
curves can adjust the width of the cross section. A profile curve is defined along the y
axis. It starts at (start radius, 0, 0) and ends at (end radius, y, 0). The curve is stretched in
y axis to fit the length of the axis of the generalized cylinder between the two control
points P1 and P2. A profile curve is added to a GenCylPoint object using the method
addProfile.

 56

When more than one profile curve is specified, each curve has to be given a value
between 0 and 1, indicating the normalized distance along the cross section curve. The
value 0 is at the beginning of the cross section curve and the value 1 at the end. The
distance is specified as the second parameter of the addProfile method. Profile curves
along a cross section are interpolated.

H.3. Rendering
For rendering purposes contour curves and profile curves need to be divided into a
number of straight segments. The segments are distributed evenly along the curve (even
if it consists of several primitives - arcs, line segments, or Bezier curves) so that their
lengths are the same.

In case you want to preserve sharp features or when you do not want to further tessellate
line segments on the curve, you can specify the number of segments for each primitive on
the curve, indexed in the order they were specified:
 profile.addBezier(fr1, fr2)
 profile.addLine (fr3)
 profile.setNumSegments (0,8) // index 0 – Bezier
 profile.setNumSegments (1,1) // index 1 - line

When a generalized cylinder is tessellated, contours at points P1 and P2 have to be split
into the same number of segments. If not, the second contour is re-tessellated. Similarly,
all profile curves of a GenCylPoint have to have the same number of segments.

Once contour and profile curves are tessellated the generalized cylinder is rendered as a
set of N triangle strips, where N is the number of segments along each profile curve. The
frames at P1 and P2 are interpolated, as are coordinates of corresponding contour points
at point P1 and P2. Along the strip, the values between profile curves (if there is more
than one) are also interpolated, based on the distance along the contour curve.

	1 Scripted Patterns in Photoshop CC
	2 Deco Framework Overview
	3 Defining Scripts
	3.1 Predefined Objects
	3.2 Direct Specification
	3.2.1 Debugging a Script
	3.2.2 Default Grid Fill as Scripted Pattern
	3.2.3 Adding Rotation to the Pattern
	3.2.4 Controlling Model Parameters
	3.2.5 Changing Blend Mode
	3.2.6 Modifying Color – Color Blend Mode
	3.2.7 Scaling the Patterns
	3.2.8 Preserving Randomness across Selections

	4 Drawing Geometric Primitives in Scripts
	5 Advanced topics
	5.1 Use of Paths
	5.2 Instancing
	5.3 Defining Control Dialogs
	5.3.1 Script Parameters to be Modified
	5.3.2 Dialog Definition
	5.3.3 Run Method for Preview

	5.4 Pattern Subregions
	5.5 Troubleshooting OpenGL
	5.6 3D Geometry
	5.7 Simulation Loop
	5.8 Operation of Deco Scripts
	5.8.1 Produce Pass
	5.8.2 Rendering Pass
	5.8.3 Module’s Position and Orientation - Frame

	6 Performance
	6.1 Controlling the Progress Bar
	6.2 Rotating Patterns when OpenGL is Disabled

	7 Motivation for Using Procedural Modeling
	8 Conclusions
	9 Additional Resources
	Appendices
	A. Object Engine
	B. Object Frame
	C. Object Vector
	D. Object RenderAPI
	D.1 Drawing Methods of RenderAPI
	D.2 Lighting of 3D Primitives
	E. Object Image
	F. Object Symmetry
	G. Object DecoGeometry
	H. Generalized Cylinders
	H.1. Cross Section Curve
	H.2. Profile Curves
	H.3. Rendering

