Publications

Show and Recall: Learning What Makes Videos Memorable

IEEE International Conference on Computer Vision Workshops

Publication date: October 29, 2017

Sumit Shekhar, Dhruv Singal, Harvineet Singh, Manav Kedia, Akhil Shetty

With the explosion of video content on the Internet, there is a need for research on methods for video analysis which take human cognition into account. One such cognitive measure is memorability, or the ability to recall visual content after watching it. Prior research has looked into image memorability and shown that it is intrinsic to visual content, but the problem of modeling video memorability has not been addressed sufficiently. In this work, we develop a prediction model for video memorability, including complexities of video content in it. Detailed feature analysis reveals that the proposed method correlates well with existing findings on memorability. We also describe a novel experiment of predicting video sub-shot memorability and show that our approach improves over current memorability methods in this task. Experiments on standard datasets demonstrate that the proposed metric can achieve results on par or better than the state-of-the art methods for video summarization.